Let it snow…

I have found myself shovelling a lot of snow this winter. As with last winter, it has been cold and snowy across northern Europe so far, which has led to the usual questioning of climate change by the usual suspects. There is some very good work examining this on the real climate blog and Marcus Brigstocke did his usual amusing best on the Now Show towards the end of last year, so I’m not going to write about the difference between weather and climate, or about how regional and global average temperatures differ. Rather, the time spent shovelling snow and wandering around the city streets camera in hand to take photos, really brought home how many of the snow processes that are subjects of active research in remote or mountainous areas are currently on display in our cities.

For instance, today in the local park I noticed that there is preferential melt occurring around the trees. The dark tree trunks absorb and emit more radiation that then melts snow around the trees faster than it melts in the open areas of the lawn. This is an important consideration in the planting of forests in snowy areas, since the presence of vast forests can significantly alter the albedo of the earth’s surface, that is how much radiation is reflected back in to space. Planting trees in the tundra to combat climate change may have the unintended effect of actually enhancing warming through changes of this kind.

Picture of glacier table - a boulder balanced on a thin stack of ice
Glacier table in Switzerland (Glaciers Online)

The process can also be seen to spectacular effect on glaciers, where rocks and boulders shield the ice below them from melting but enhance it around them, leading to the formation of so-called glacier tables, such as this one in Switzerland (from glaciers online).

More seriously, the heavy snow on rooves around the city is currently posing an avalanche hazard rarely encountered outside the mountains. The effect of sunshine on heavy snow, which is resting on a slope of a critical angle, can be extremely dangerous to the unwary. As are the large numbers of icicles which have developed. These are not just a sign of poorly insulated buildings (where the heat leaking out has caused the snow to melt and then quickly refreeze in the low temperatures we’ve had). Icicles falling from buildings show the same mechanics as seracs falling from the steep parts of glaciers known as ice falls. In this case, the ice builds up to such a degree that the sheer weight of it eventually causes fracture when a critical threshold is reached. Pedestrians are learning to walk on the outside of pavements and to look up frequently at the overhanging cornices of snow and ice.

But back to the snow shovelling. I have not done so much digging since fieldwork last winter in Svalbard, where we set up some experiments to study the properties of snow and how this affects the melt, or conversely the growth, of glaciers. Specifically, we were studying the effects of liquid water from snow melt or rain on the snow pack and the glacier surface. Liquid water filters into the snow, or else runs off bare glacier ice if there is no snow and will typically freeze, forming ice lenses in the snow pack, or large areas of what is known as superimposed ice on the glacier surface.   As you can imagine, there was a lot of snow shovelling, especially as the high winds on the glacier kept filling in the trenches we dug to work in.

Now this probably sounds like a fairly esoteric set of experiments, but the purpose is actually quite serious, since we need to know how much melt water refreezes to work out how much the glaciers and large ice sheets of the world are melting and how sea level rise is likely to progress in the future in a warming world.

Identifying the melt area of a glacier or ice sheet is a relatively straightforward task using satellite imagery, but identifying how much of that melt runs off or refreezes is impossible at present, so we generally use a model, based on observations and experiments like these, to make an approximation. We also need to factor in the effect of latent heat, (heat that is released when liquid water becomes solid ice) since this can warm up the snow pack significantly. In Greenland for instance, it is likely that the effects of higher temperatures over the last 20 years or so have been buffered somewhat by the snow pack and refreezing processes. However, as temperatures continue to increase, melt will probably accelerate partly because the saturated snow pack cannot absorb additional melt water but also because it has a higher temperature from the release of latent heat and thus requires less additional energy to melt.

Last winter I tested out some of the techniques we used in Svalbard, in a pile of snow in my back garden. I am also aware of at least one study into permafrost, where patterned ground usually found in Arctic climates was created in a back garden in St Andrews, so it’s even possible to do valid experimental work during the winter time when conditions are right. However, the climate of glaciated regions is generally unlike that of the cities of Europe so there will still be a need to go to places like Svalbard to do experiments quantifying these kind of processes. Nevertheless, I still find this kind of weather inspiring and I’m hoping to get more insights as the winter progresses.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s