Power to X

Yesterday, I attended a mini conference on power to X and the potential to generate green synthetic fuels in Greenland.

Power to X became a big thing in Denmark a few years ago and the government is keen to promote it. Danish company Topsoe are currently building a green fuel facility in Herning and they have a nice explainer on their website of the concept.

In Greenland the fuels could be anything from hydrogen to methanol (though I learnt methanol is least likely as it requires a CO2 source that Greenland doesn’t have, ammonia seems the most plausible initially).

It was an interesting meeting, lots of different companies, institutions and the Greenlandic MP Aaja Chemnitz as well as academics were in the room. The emphasis was very much on the social and economic aspects of power to X, but as the title implied: Greenland has the potential to be the “world’s largest energy island.” From a local point of view, Greenland has very high per capita emissions and is heavily dependent on energy imports for transport, though a majority of electricity, at least in the south west, is already hydropower.

Many other smaller and more remote communities however are dependent on diesel generators for heating and power as well as for shipping, fishing and flying between communities.* Transitioning away from these fuels will be challenging but the potential for much larger developments is clear.

Head of development at NunaGreen (the recently rebranded and reoriented NunaOil), Rasmus Wendt, emphasised just how cheap and in theory at least, abundant, Greenland hydropower is. Probably some of the cheapest electricity in the world is generated by Greenlandic dams already operating or planned. And indeed the potential is massive. As the ice sheet melts, enormous amounts of water are produced more or less endlessly in Greenland. It will take at least a thousand years to melt the whole ice sheet, even under a high emissions scenario. We’re not going to run out of water soon.

Figure 2 from Aschwanden et al., 2019.
Observed 2008 state and simulations of the Greenland Ice Sheet at year 3000.
(A) Observed 2008 ice extent (53). (B to D) Likelihood (percentiles) of ice cover as percentage of the ensemble simulations with nonzero ice thickness. Likelihoods less than the 16th percentile are masked. (E) Multiyear composite of observed surface speeds (61). (F to H) Surface speeds from the control simulation. Basin names shown in (A) in clockwise order are southwest (SW), central-west (CW), northwest (NW), north (NO), northeast (NE), and southeast (SE). RCP 2.6 (B and F), RCP 4.5 (C and G), and RCP 8.5 (D and H). Topography in meters above sea level (m a.s.l.) [(A) to (H)].

Wind energy too is extremely underdeveloped but potentially huge in Greenland. The problem is of course, all that potential energy is a long way from the end users as this screenshot from the global wind atlas, shared by energy scenario planner Brian Vad Mathiessen shows well.

Screenshot from the global wind atlas showing wind energy potential in Greenland and the north Atlantic margin of Europe

By sheer coincidence, this morning I stumbled over this article in the Dutch newspaper NRC on mastodon about the large green hydrogen facility currently under construction by Shell in Rotterdam.

It’s a really interesting read – (if you don’t speak Dutch try DeepL translation) and I was struck by many of the same issues being raised there as in the Greenland meeting: lack of trained staff, uncertain commercial environment, cost and competitiveness with other energy sources. Unlike in Greenland, energy in the Netherlands for producing synthetic fuels is scarce, but the market for using the energy is huge and nearby, and given the EU’s ambitions to produce and, crucially, import large amounts of hydrogen fuel by 2030, it seems like many of the important stars are aligning. Importing ammonia to Rotterdam for cracking back into hydrogen seems like it could actually be a viable future for Greenlandic generated fuels in Greenland he medium to long term.

We at DMI are shortly starting a project within the National Centre for Climate Research framework looking at exactly the potential to generate renewable energy from a climate and weather angle. But what I took away from yesterday’s meeting is that while the physical potential in Greenland really is HUGE, the regulatory environment – and probably the local population – is supportive, the economic certainty is not quite there yet.

It felt a bit like being in a bunch of young seabirds clustered on the edge of the cliff, none quite daring to take the flight, in spite of the undoubted rewards. And indeed, this seems the situation in the Netherlands too. I was especially struck by this quote in the NRC piece:

“Another problem is that many parties are just waiting for each other to take the first step so that they themselves dare to go. Producers, for instance, invest only sparingly because they are not sure whether there will soon be customers, and customers in turn hesitate because they are not sure whether the producers will deliver. The classic chicken-and-egg story.”
(Translated with DeepL)

Chris Hensen, NRC, 17thnMay 2023 “De Europese waterstofambities zijn groot, maar bedrijven zijn nog altijd afwachtend”

Perhaps the diving in of Shell, a company that can afford to risk investing a billion Euros in a new facility in Rotterdam, is what the development of Power to X needs?

BP, Air liquide and Uniper already have plans to build follow on plants in Rotterdam. Once one of the birds have taken flight, others will surely follow.

Thanks to Aalborg University,and especially my Danish Arctic Research Forum colleague Carina Ren for an interesting and inspiring meeting.

*(As an aside, I was reflecting while on fieldwork just how difficult removing fossil fuels from scientific work in Greenland will be. We rely on petrol generators to power equipment and oil stoves to warm tents. What if we could develop an easy to operate “tabletop” (or even just room sized) electrolysis system to generate clean fuels from e.g. wind energy, that we could burn instead of paraffin and/petrol? I’d invest in that and it would be a quick win for Greenland science.)

Inside of the tent during fieldwork, note the primus stove, running on petrol, for melting ice for water and food and the paraffin powered oven to keep the inside warm and dry while camping.

Oh Vienna…

In the before times I would usually spend this week walking around a world class city humming an old 80’s hit (- don’t ask me why it was so durable in my head, probably something to do with being an impressionable age at a time when access to pop music meant half an hour on a Thursday evening).

Anyway, it is the time for EGU… Sadly I will not be wandering the streets of the ever beautiful (and most livable) capital of Austria this year. I have to get some actual work done, but I’m following the #EGU23 on mastodon and hoping to catch a few highlights on the sides. I do have a poster, which will be capably presented by PolarRES PI Priscilla Mooney and my DMI Colleague Abraham Torres on Thursday.

The topic is our PolarRES project – an ambitious Horizon 2020 effort to produce a large ensemble of regional climate simulations over both poles. These are state-of-the-art regional climate models run at unprecedented high spatial resolution and all data will be made open access and free via the CORDEX project.

I will also put it here later – feel free to comment here or ask questions on mastodon or get in touch by email if it sounds exciting.

Mottram, R., Mooney, P., and Torres, J. A. and the PolarRES Consortium: A first look at the new PolarRES ensemble of polar regional climate model storylines to 2100, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14470, https://doi.org/10.5194/egusphere-egu23-14470, 2023.

Other posters and talks I’ve contributed to from PolarRES are

Kristiina Verro’s talk on HCLIM_Arome results from the Antarctic peninsula:

Verro, K., van de Berg, W. J., Orr, A., Landgren, O., and van Ulft, B.: New non-hydrostatic polar regional climate model HCLIM-AROME: analysis of the föhn event on 27 January 2011 over the Larsen C Ice Shelf, Antarctic Peninsula, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13864, https://doi.org/10.5194/egusphere-egu23-13864, 2023.

Abraham Torres joined our group last year and is primarily working on PolarRES also. He will show some of our preliminary HCLIM results for both the Arctic and the Antarctic

Torres-Alavez, A., Landgren, O., Boberg, F., Christensen, O. B., Mottram, R., Olesen, M., Van Ulft, B., Verro, K., and Batrak, Y.: Assessing Performance of a new High Resolution polar regional climate model with remote sensing and in-situ observations: HCLIM in the Arctic and Antarctica, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14090, https://doi.org/10.5194/egusphere-egu23-14090, 2023

Quentin Glaude is a collaborator from Liege in the Horizon 2020 PROTECT project on sea level rise contributions from the cryosphere . Baptiste Vandecrux, a former PhD student with me here and now working at GEUS is also presenting some work based on the same models as Quentin, with a comparison to the PROMICE observation statons on the Greealnd ice sheet. It’s very cool application of machine learning and the results are very interesting.

Glaude, Q., Noel, B., Olesen, M., Boberg, F., van den Broeke, M., Mottram, R., and Fettweis, X.: The Divergent Futures of Greenland Surface Mass Balance Estimates from Different Regional Climate Models, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7920, https://doi.org/10.5194/egusphere-egu23-7920, 2023

Vandecrux, B., Fausto, R. S., Box, J. E., Covi, F., Hock, R., Rennermalm, A., Heilig, A., Abermann, J., Van As, D., Løkkegaard, A., Fettweis, X., Smeets, P. C. J. P., Kuipers Munneke, P., Van Den Broeke, M., Brils, M., Langen, P. L., Mottram, R., and Ahlstrøm, A. P.: Historical snow and ice temperature compilation documents the recent warming of the Greenland ice sheet, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-9080, https://doi.org/10.5194/egusphere-egu23-9080, 2023.

Nicolaj Hansen (who finished his PhD with me and Sebastian Simonsen at DTU Space last year) has just submitted a beauty of a paper which he will talk about – also partof PROTECT.

 Hansen, N., Sørensen, L. S., Spada, G., Melini, D., Forsberg, R., Mottram, R., and Simonsen, S. B.: ICESat-2 Ice Sheet Mass balance: Going below the surface, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-12349, https://doi.org/10.5194/egusphere-egu23-12349, 2023

Mathias Larsen is a current Phd student with me and is presenting a poster on the CARRA dataset and an application in surface mass balance modelling. This work falls under the danish National center for klima forskning

Larsen, M., H. Mottram, R., and L. Langen, P.: CARRA-driven simulation of Greenland Ice Sheet surface mass balance at 2.5 km resolution, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5852, https://doi.org/10.5194/egusphere-egu23-5852, 2023

Last year I co-organised a bootcamp for early career researchers on Arctic processes in the CMIP6 models. It was super fun and would not have been possible without the support offered by Anne Fouilloux, Tina Odaka and colleagues from the Pangeo project. Their poster is super interesting and if you’re interested in optimising the use of big climate data, go and check it out!

Fouilloux, A., Marasco, P. L., Odaka, T., Mottram, R., Zieger, P., Schulz, M., Coca-Castro, A., Iaquinta, J., and Eynard Bontemps, G.: Pangeo framework for training: experience with FOSS4G, the CLIVAR bootcamp and the eScience course, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8756, https://doi.org/10.5194/egusphere-egu23-8756, 2023.

Excitingly, at least 3 of the projects at the bootcamp will also be presented at EGU this year. So, lots to be getting on with, for now, here’s a link to Ultravox’s finest…

Q is for Qaanaaq

Back in Denmark after 2 weeks in Greenland. Always a bit strange to come back, not just that transition from Arctic cold to European Spring but the sheer abundance of the fertile mid-latitudes, colours, plants, trees, the sheer number of people.

Not to mention that expedition frame of mind, where you are really focused on accomplishing a given set of often quite complex tasks (almost) without distraction. It is the ultimate deep work task, and naturally readjusting to family life, not to mention the tsunami of work tasks left on hold is… difficult.

This particular deep fieldwork has been carried out in Qaanaaq, Northern Greenland, as I’ve written about before. The community of about 600 people (and maybe a 1000 dogs), was established in the 1950s when the US established the Thule air base. It is almost the most northern settlement in Greenland – and certainly the largest. The small village of Siorapaluk is about 45km (or 6 hours by dog sled) further away.

The town was formerly a summer hunting spot, but after Thule was decided on, the community was moved to Qaanaaq year round. It has an association with the famous Danish explorer Knud Rasmussen, whose old house is a museum (allegedly. I’ve never actually had time to visit it..)

DMI established a geomagnetic observatory there in the 1950s and today its part of the Comprehensive Test Ban Treaty Organisation network that DMI operates on behalf of the Danish government from what we now call the DMI geophysical facility. There is transnational access to this via the INTERACT network.

This year we again visited the glaciers at the head of the Inglefield Fjord – expanding a new research programme we piloted last year. We also did a lot of work on the sea ice – not just Steffen Olsen‘s ocean programme, but a new NCKF research programme looking at biological productivity and carbon cycling in the fjord, led by Anna Pedersen, a DMI PhD student also at the University of Southern Denmark. I and another colleagues also did a lot of work on snow processes that is something of a pilot programme for a processes project we’d like to establish next year that will also involve (hopefully) our weather forecasting colleagues and perhaps also the GEUS PROMICE programme.

All of this work involved 6 days of travelling over and camping on the sea ice, plus an additional day trip. We were lucky with the weather, although it was *extremely* cold, around -25 to -28C most days, and dipping well below -30C at night (though being after the equinox it was never truly pitch dark). However, in general there was little wind, no fresh snow (which can really slow the dogs down as they struggle to pull through deep soft snow) and the sun shone every day. This meant we basically managed to achieve the full planned programme – including our extra-optimistic goals – which almost never happens in fieldwork.

Camping on the sea ice at sunset. Northern Greenland
This work by Ruth Mottram is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

I intend to write a whole series of posts based on what we have been doing scientifically and technically as well as some general observations. There have been various hints already in my preferred social network. The whole trip was super inspiring, it’s always valuable to get out and observe the real world when you’re trying to model it, understand it and make projections of sea level rise.

I also promised to make another Lego scientists series and took quite a few photos in between times to do so. However, the research programme was packed, so I had no time at all to make the comic during fieldwork, that will have to wait a few weeks.

Expect my pixelfed account to host gratuitous numbers of dog pictures. And ice pictures. And unexpectedly clear blue skies. For now it’s time to unpack, get the washing machine going and spend some time with my family.

Sunset over sea ice near Qaanaaq, North West Greenland
This work by Ruth Mottram is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

As ever, thanks to my amazing colleagues Steffen Malskær Olsen, Andrea Gierisch and Anna Pedersen for an incredible trip and to DMI station manager in Qaanaaq Aksel Ascanius without whom most of this work would be impossible.

Special thanks to our friends in Qaanaaq, the local hunters, whose unfailing energies and knowledge are absolutely essential to these scientific projects. We literally could not do this without them and of course their dogs.

I must also credit DMI and the Danish Government for funding via the National Center for Klima Forskning and thanks also to Horizon Europe projects PROTECT on sea level rise and PolarRES for additional inspiration and funding and to my colleagues at the Horizon Europe/NERC project OCEAN:ICE for indulging my two weeks away. All three projects will benefit from the insights gained in this fieldwork.

The further adventures of batgirl…

I wrote this series of comics to amuse and inform my kids while I was on fieldwork a few years ago. It turned out to be quite a success and my kids classes both read the Danish versions at their school.

Last year I started https://icemangoeshome.wordpress.com/more-arctic-adventures/ the further adventures of batgirl on the ice with her new friends the Lego scientists and a couple of stowaways.. but last year’s season was extremely busy and I never managed to finish it.

I asked yesterday on mastodon if I should do another this year, and the only feedback I got was I should try to finish the one I started last year. So maybe that’s what I’ll try to do. It’s always challenging fitting around field tasks though so no promises.

This is just a quick post from the airport: you’ve been warned, bat girls and her friends are on their way back with a new season!

https://icemangoeshome.wordpress.com/more-arctic-adventures/

Lego figures in the snow

Signs of Spring

Currently, I’m very busy getting ready with colleagues to travel to Greenland next week. We have an extremely full programme of fieldwork activities covering oceanography, biology, sea ice, snow and glacier processes as part of our NCKF work. More on these no doubt in a future post…

Yesterday, one of my ace DMI colleagues (without whom most of the work we plan would definitely not happen) shared the first optical satellite image of the area this year – taken by ESA’s Sentinel 2 (a truly astonishing source of free imagery and everone should know about it). Because the area is very far north, it has been in the Polar night until now so we have been reliant on the ESA Sentinel 1 imagery based on radar.

First Sentinel-2 optical satellite image of the year downloaded from Sentinel Hub’s EO Browser today. Processing with Sentinel Hubs optimised natural colour filter has introduced some artefacts, notable the brigh white patches which probably represent areas of shadow due to the low solar angle. The area is blanketed in thin cloud and only parts of the glaciers, sea ice and icebergs are clearly visibe.

It’s a wonderful thing to see the first satellite image of Spring, akin to other signs like the first cuckoo (in the UK), the first peewit egg (in the Netherlands), and the timing of the cherry blossom in Kyoto.

The first lapwing (peewit) egg of the year was traditionally presented to the Dutch monarch – these days, given the

There was recently a very illuminating thread on phenology on mastodon in reply to a query by Pauline von Hellerman where the Diagram Monkey John Kennedy pointed out the existence of the Pan European Phenology network – not something I was aware of before (though I’d suspected it’s existence) – and who have all sorts of interesting data.

Where biology is clearly showing us earlier springs due to climate change, the date of the first optical image is unlikely to change any time soon due to climate change.

A newer updated version of the Economist’s cherry blossom flowering date plot provided by Datagraver after I posted the old one. See: https://mastodon.social/@Datagraver/110021046678442071

Nor are species assemblages (it’s not quite certain that it’s the same variety of cherry blossom for the whole 1200 year period), or biodiversity losses (the cuckoo is down 65% since the early 1980s alone in the UK, and heaven knows it was not particularly common then) likely to affect it. Not to mention human behaviour changes, the lapwing has gone from being a common agricultural bird to near threatened over the same period, which probably also affects the reliability of that data.

Of course, quite a bit of what you might call bulk phenology can be done by satellite too now…

Copernicus land dataset showing biological activity in Europe basedon satellite data available here

As for Qaanaaq, there is not much in the way of biological phenology, but a compilation and analysis of data on sea ice cover and thickness over the last 60 years would probably be as instructive. Do get in touch if you’re interested in doing this as a student project…

Sea Level Rise: How far, how fast?

A paper appeared in Science this week about sea level rise in the last interglacial (about 129-116,000 years ago). It has sparked the usual predictable headlines as it points out that during that period, sea level rose by about 6-9 metres but that that the ocean temperature as far as it can be reconstructed, is about what we see now, that is about 0.5C warmer than the preindustrial.

sealevelguardian
Guardian reports on latest study

In a sense this isn’t that “new” – we’ve known about higher sea levels during the last interglacial for ages and that the global mean temperature was roughly 2C above the pre-industrial global mean. This is in fact one of the reasons for the Paris target (though some scientists speculate that it’s also pretty much already out of reach).

However, the sea surface temperature stuff makes it extra interesting as the ocean is a pretty big source of uncertainty in global climate models and mot models do not manage to reproduce modern day ocean temperatures all that well.

It should also be said that the last interglacial is only a good analogue for 2C world up to a point – it was warm because of enhanced solar input, not because of greenhouse gases as this plot from an Antarctic ice core, edited by the awesome Bethan Davies at the Antarctic Glaciers blog shows:

vostok_420ky_4curves_insolation_to_2004
Carbon dioxide (CO2), Methane (CH4) with reconstructed temperature from the Vostok Ice Core, taken in Eastern Antarctica. Enhanced with modern methane, CO2 and temperature measurements by Bethan Davies. Note that the “modern” value of CO2 here is from 2004. In 2017 it is currently measuring 403 ppm.

It’s also interesting to speculate where the water came from – the Greenland ice sheet was much smaller than today but it was still there and now “only” contains 7m of sea level rise today. So the complete disappearance of Greenland cannot explain the rise in global sea level. The small glaciers and ice caps of the world can’t contribute more than half a metre or so either. Therefore it has to be Antarctica contributing the most – East or West is the question and it really is a very very longstanding question.

The progress in the international polar year (IPY) in mapping the bedrock of Antarctic in the BEDMAP2 brought quite a few surprises, including the discovery of several very deep marine basins in the East that could potentially contribute a lot of water to sea level.

More recently, channels under the floating ice shelves of west Antartica, along with various modelling studies have proposed that the west could be much more unstable than thought. Actually this has been a very very longstanding problem in Antarctic science since at least the late 1970s when John Mercer first proposed the marine ice sheet instability hypothesis.

In any case, events in both Denmark and the UK have brought this problem home more sharply.

stillstormflod
The silent storm surge – coastal flooding in Copenhagen on the 5th January – the water in the harbour is not normally this high! Source: Brian Dehli, shared by DR 

aslaktweet

The “silent storm surge” in January 2017 around the coast of Denmark was  a hundred year event in many places, but as Aslak Grinsted points out, sea level rise makes a hundred year event a 20 year event with only a small rise.

Sea level will not rise equally everywhere, the fingerprint of Greenland ice sheet loss is felt largely in the Pacific, Antarctic ice melt will be felt in Europe. It matters where the water comes from. A point not generally appreciated.

So this new paper is also important, but it only underlines that we need to be able to make much much better estimates of how fast and how far the ice sheets will retreat, which is the justification for much of my own scientific research.

Finally, I think it’s probably necessary to point out that sea level is already rising. This was asked by a listener to Inside science, one of my favourite BBC radio 4 programmes/podcasts. I was a little surprised that an apparently scientifically literate and interested member of the public was not aware that we can measure sea level rise pretty well – in fact to an extent, the global warming signal is more easily detected in the ocean than in the global temperature record. This is because the ocean expands as it warms and there is ocean pretty much everywhere, whereas temperature observations are patchy and mostly on land. Clearly, scientists like myself are *still* not doing a very good job of communicating our science more widely. So here is the global mean sea level record to date, it’s updated pretty regularly here and on average, sea level is rising at about 3mm per year or 3cm per decade.

 

sealevel
Sea level variation measured by satellite since 1993 from NASA

When we look at tidal gauges,sea level rose about 20cm in the 2oth century

20crsealevel
Sea level rise in the 20th century measured by tide gauges, plot by NASA, data from CSIRO

The big uncertainties we have on whether or not this will accelerate in years to come is largely down to missing processes in ice sheet models that we don’t yet understand or model well – mostly calving by glaciers and ice shelves. I promised Steve Bloom a blog post on that at some point – I have a paper to finish and new simulations to run, but hopefully I’ll get round to that next.

UPDATE: I was made aware this morning of a new report from the European Environment Agency about climate change impacts and adaptation in Europe. In the report they state (correctly) that while the IPCC 5th Assessment Report suggested that in the 21st century the likely sea level rise will be on the order of half a metre, some national and expert assessments (I took part in a couple of these) had suggested an upper bound of 1.5 – 2m this century, for high emissions scenarios.

This is a big difference and would be pretty challenging to adapt to in low-lying countries like the Netherlands and Denmark, not to mention big coastal cities like London or Hamburg. It’s laso important to emphasise that it doesn’t jsut stop at the end of the century, in fact our simulations of the retreat of Greenland ice sheet suggest it’s only just getting going at the end of this century and the next century the rate of ice loss will really start to accelerate.

All of which is to say, there’s really a very good reason to act now to reduce our emissions. The EEA has also produced this very nice map of observed sea level rise in Europe over the last two decades based on  Copernicus environmental data.

Obs_slr_Europe.png
Check out how much the sea level is rising where you live… Source: European Environment Agency, data from Copernicus Marine Environment Monitoring Service

With the prospect of American federal funding for environmental observations being reduced or strongly constrained in the future, it’s really important we start to identify and support the European datasets which are the only other sources of environmental monitoring out there right now.

 

 

Rain rain go away…

My 2 kids were singing the rain rain go away rhyme during last weekend’s epic rainfall in Copenhagen and it reminded me that I have not yet put up a post about a paper I was a co-author on this summer related to late summer/autumn rainfall and the effects on the Greenland ice sheet, so here goes….

Mostly when we think of precipitation in Greenland we think of snow in the winter, but it does rain quite a lot, as I know from personal experience (see photo taken as the clouds started to clear one September field season in Eastern Greenland…). This paper in Nature Geoscience by Sam Doyle and co-authors including myself shows that when rain falls on the ice sheet at the “wrong” time of year it can have a very far-reaching effect, causing the speed up of a large area across the ice sheet.

Rain clouds over the Stauning Alps of Eastern Greenland after the third day of rain... Exploratory mining camp tents in the foreground.
Rain clouds over the Stauning Alps of Eastern Greenland after the third day of rain…
Exploratory mining camp tents in the foreground.

The important caveat is that rainfall during the main part of the melt season is more or less evacuated away quickly. Glaciers – and the Greenland ice sheet is basically a very big glacier – develop a drainage system more or less analogous to large underground sewers during the melt season. These tend to close down during the colder accumulation season and reopen by the sheer pressure of water running through them when the melt season starts. Rainfall during that crucial late summer/early autumn period when the drainage is closing down and therefore less efficient at evacuating surplus liquid water is therefore not able to move away from the glacier very easily and forces its way through any way it can find.

During this period, most of the snow will have melted off the surface, leaving vast areas of bare ice. By contrast, rain on snow in the early part of the melt season when there is a thick snow pack is more likely to refreeze inside the snow. In late summer however, there will be a relatively short period between rain falling and accumulating in the glacier drainage system.

In practice this means the water makes its way to the bed of the glacier through moulins and englacial channels, where it more or less hydraulically jacks up the glacier over a large region, allowing the ice to flow to the margins faster. There may then also be a knock-on effect with increased calving of icebergs at outlet glaciers. in 2011, the field team were able to measure both the rain fall and the following cascade of processes in a range of different datasets as shown below:

Rainfall (a,b) over the ice sheet runs off the bare ice quickly as shown by discharge stations on a number of rivers in western Greenland (c). This triggers acceleration  across a wide area, shown by GPS stations on the ice sheet at 10 different locations (d). Figure taken from the paper
Rainfall (a,b) over the ice sheet runs off the bare ice quickly as shown by discharge stations on a number of rivers in western Greenland (c). This triggers acceleration across a wide area, shown by GPS stations on the ice sheet at 10 different locations (d). Figure taken from the paper

My contribution to the paper was in the form of some HIRHAM5 model runs for Greenland which show the last decade has seen a significant increase in rainfall events in the summertime compared with the previous decade. We chose as a study region the K-transect of weather stations in western Greenland. These are operated by Utrecht University and have a long time-series of data which previous work has shown our model can replicate quite nicely. The model is forced by the ERA-Interim reanalysis, a data set based on weather forecast models with real observations included in it run for the whole world so we are pretty confident the rainfall patterns are realistic. There are actually two interesting points illustrated in the picture below taken from the paper. Firstly that there is more rain falling and secondly that this rain is falling at higher elevations on the ice sheet, potentially causing a much wider area of the ice sheet to be affected by late-summer rainfall events.

The decadal change in rainfall events is partly due to a persistent North Atlantic Oscillation anomaly which has funnelled storms over the western edge of the ice sheet. There is also some evidence that the stratospheric Rossby waves have become more “wavy” over the same period, due to the increasing warming and vanishing sea ice in the Arctic. This hypothesis was articulated in a very nice paper by Francis and Vavrus but it remains a very open area of research as we just don’t have a lot of evidence right now.

We do know that the Arctic is one of the fastest warming regions on the planet and this will certainly have a knock-on effect on the Greenland ice sheet both in terms of melting and, perhaps, in the frequency of storms bringing rain over the ice sheet in the future. I am now preparing a new study to see if we see a signal along these lines in our future simulations of the Greenland domain.

Rainfall events at a weekly timestep over the K-transect in western Greenland  for two different decades and the difference between the two. The second decade has many more rainfall events that reach to a much higher elevation than the first decade.
Rainfall events at a weekly timestep over the K-transect in western Greenland for two different decades and the difference between the two. The second decade has many more rainfall events that reach to a much higher elevation than the first decade.

Conversion Factors

The official end of the hydrological year in Greenland (1st September to 31st August) means I am rather busy writing reports to give an overview of where the ice sheet is this year and what happened. I will try to write a quick blogpost about this in the next week or so (in case you’re curious here’s a quick plot to show the entire annual SMB, see also: http://polarportal.dk/en/groenlands-indlandsis/nbsp/isens-overflade/)

Daily and accumulated surface mass budget of the Greenland ice sheet, 31st August, 2015, last day of the hydrological year
Daily and accumulated surface mass budget of the Greenland ice sheet, 31st August, 2015
Anyway, as I find I am constantly switching between Gigatonnes (or indeed Gigatons), cubic kilometres and sea level equivalent, here is a quick and handy guide to converting different units of mass, for my own use as much as anyone else.

1 gigatonne is 1 billion metric tonnes  (or 1 milliard if you like the old British style, that is one thousand million).

However, on the Polar Portal we usually reckon everything in water equivalent. This is to save having to distinguish between snow (with a density between ~100 kg/m3 when freshly fallen and ~350 kg/m3 m when settled after a few days), firn (snow that has survived a full annual cycle with a density up to ~800 kg/m3) and glacier ice (anything from ~850 kg/m3 to 900+). Water has a density (at 4C) of 1000 kg/m3

1 gigatonne of ice will still weigh 1 gigatonne when it is melted but the volume will be lower since ice expands when it freezes.

1 metric tonne of water is 1 cubic metre and 1 billion metric tonnes is 1 km3 (a cubic kilometre of water)

A cubic kilometre of ice does not however weight 1 gigatonne but about 10% less because of the density difference.

100 gigatonnes of water is roughly 0.28mm of sea level rise (on average, note there are big regional differences in how sea level smooths itself out).

Finally, 1 mm sea level rise is 360 Gt of ice (roughly the number of days in a year) 

EDIT: – thanks to ice sheet modeler Frank Pattyn and ice core specialist Tas van Ommen on Twitter for pointing out I’d missed this last handy conversion. Interestingly and probably entirely coincidentally this is very close to the amount of mass lost by the Greenland ice sheet reported by Helm et al., 2014 for the the period January 2011 – January 2014 (pdf here) of 375 +/-24 km3 per year.

Over the last 10 years or so, Greenland has lost on average around 250 Gigatonnes of ice a year (Shepherd et al., 2012), contributing a bit less than a millimetre to global sea level every year with some big interannual variability. This year looks like it will be a comparable number but we will have to wait for the GRACE satellite results in a couple of months to fill in the dynamic component of the mass budget and come up with our final number.

Of course, gigatonnes and cubic kilometres are rather hard to visualise so we have skeptical science to thank for this post that tries. And as aside, Chris Mooney wrote a nice piece in the Washington Post on the difficulties of visualising how much ice is being lost which contains the immortal  line “Antarctica is clearly losing billions of African elephants worth of ice each year”.

A question of observation?

It’s been a while since I lasted posted anything, not for want of ideas but mainly lack of time. I shall try to catch up over the next few weeks. For now I was inspired to write an ultra-quick post about a very trivial question that came up at work today. I think it really captures how observational meteorology works (or should work).

Today, a colleague, John Cappelen, (also known as Mr. Greenland observational data), happened to mention in passing that on the 15th July this year, the weather station at Summit on the Greenland ice sheet had transmitted back to us in Copenhagen, a temperature observation of 2.5°C. This was during one of the highest melt periods this summer.

Automatic weather station operating at Summit, June 2015
The automatic weather station doing it’s thing at Summit, June 2015. Photo: DMI

Bearing in mind that Summit Camp is at roughly 3,216m, this is a pretty high measured temperature. In fact it would be rather noteworthy, especially as it occurred on one of the highest melt days of the summer. Temperatures above 0°C at Summit are not unknown and the record, during the famous summer of 2012 when around 95% of the ice sheet surface experienced melt, the water sweeping away a bridge on the Watson River near Kangerlussuaq, was 3.6°C.

Now, my colleague is a very experienced and careful scientist. He had checked the observations and the temperatures before and after this measurement were well below zero, so, my colleague asked, was there any reason to believe this measurement or can we assume an instrument failure of some kind?

My office mate in the Arctic and Climate Research section and I obligingly had a quick look at our Polar Portal Greenland ice sheet surface plots (see below) and at the melt extent plots that are updated daily on the DMI website. We had to conclude there was no evidence of melt that high on the ice sheet and there was also no reason to believe that a sudden sharp warming had occurred at Summit on this day based on DMI’s own weather forecast. We then turned to check the weather plots, also on the polar portal and based on data from the European Centre for Medium Range Weather Forecasting (the ECMWF – probably the best weather forecast modellers in the world).

Again, the anomaly plots showed rather cold conditions prevailing over the ice sheet during this period, though at the same time very high melt and low surface mass balance from the ice sheet due to the clear skies.

Graphs showing area of the Greenland ice sheet experiencing melt conditions, compared with the average (dark grey line) and range of past summers (1990-2012), for more detail see the DMI website
Graphs showing area of the Greenland ice sheet experiencing melt conditions, compared with the average (dark grey line) and range of past summers (1990-2012), for more detail see the DMI website

Temperature record from Summit Camp for the last month.
Temperature record from Summit Camp for the last month.

Fortunately, due to the American Summit Camp we have access to a back-up dataset very close to this location and after a quick web search John Cappelen was able to confirm that indeed this measurement was an error as the nearby station has not seen anything like that during the period in question (see right).

This kind of thing happens all the time and is therefore not at all newsworthy or interesting enough to write a publication about. However, when a recent record high temperature in the UK can lead to 2 critical articles in the Daily Telegraph and a particularly vigorous exchange on twitter for Met Office scientist Mark McCarthy, as well as this corrective piece on the Carbon Brief blog, perhaps we should be more vocal about just how careful and critical we as scientists are about observations, including the ones we decide to discard as well as the ones we keep.

Surface mass balance of the Greenland ice sheet on the 15th July 2015. Intense melting around the margins led to very negative SMB (the red colours) during this period.
Surface mass balance of the Greenland ice sheet on the 15th July 2015. Intense melting around the margins led to very negative SMB (the red colours) during this period.

Addendum: I was alerted by this tweet from Gareth Jones, also a Met Office scientist, to some slightly strange cherry picking in the blogosphere of climate records from a couple of DMI stations in Greenland. These have apparently been used to claim no climatic warming trend in Greenland over the 20th Century (I’m not going to link to it).

Screenshot of tweet

Anyone who is really interested in the observational data could try checking these reports by Mr Greenland observations himself instead, here is a quick summary: 

Mean annual temperature in Copenhagen, Torshavn (Faeroes) and selected DMI weather stations in Greenland from 1873 - 2014. Figure from DMI
Mean annual temperature in Copenhagen, Torshavn (Faeroes) and selected DMI weather stations in Greenland from 1873 – 2014. Figure from DMI

Calling all students…

I’m off to the UK next week for a workshop at Sheffield University where we will discuss the Surface Mass Balance of the Greenland Ice Sheet. The ISMASS workshop includes all the main modelling groups and observation groups who are involved in assessing surface mass balance in Greenland. I will be representing DMI’s Greenland SMB work there (not an easy task condensing it down to a 20 minute talk!).

In the course of preparing my presentation I have been making plots and figures and really investigating some exciting results. Sadly, I very rarely get the chance to spend time on this these days and I am keen to recruit students to assist in this work. Should any potentially interested students want to discuss this at Sheffield do let me know.

At the risk of spoilers in my presentation, here for example is one showing how different ways of characterising the surface snow pack affects our estimates for surface mass balance, and how the effects of the specific changes can be very different in different years.

Surface mass balance map plots of Greenland
Surface mass balance for the hydrological year (Sep -Aug) ending in 2012 and 2013 calculated using HIRHAM5 with 2 different surface schemes. The maps on the right show the difference between the 2.

As I mentioned I rarely get enough time to analyse the output from our runs and I would be very happy to hear from any students who are interested in doing a project on our simulations. We have lots of MSc and Bachelors projects already listed on our website at DMI but we are always happy to hear new ideas from students on related topics. I have terabytes of data from simulations I would like to be properly analysed and this could be very interesting given we are talking about Greenland and the Arctic in the present day and in the future. It’s a really nice opportunity to work with some cutting edge research. I am also happy to hear from students who would like to do a summer project and for the right candidate I would be able to look into a paid “studentmedarbejderhjælper” position for a few months, especially if you are already a trained computer science candidate….

If you are an undergraduate looking into an MSc, I urge you to consider Denmark. EU citizens usually qualify for generous support grants (rare these days!) as we have a shortage of candidates wanting to study in the sciences in Copenhagen. The research and teaching are world class and done in English at MSc level. The possibilities for projects in Greenland are literally endless.

If you want any more details or to talk about any of the possibilities, do get in touch!